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Abstract

We present a survey on recent research on the multivariate Markov
inequality. We illustrate the power of this inequality by giving a num-
ber of its applications in the theory of extension and polynomial ap-
proximation of C∞ functions defined on compact subsets of Rn

1 Markov Inequality

In 1889, A.A. Markov answered a question posed two years earlier by Mendeleev
by showing that for every polynomial p in one variable

|p′(x)| ≤ (deg p)2‖p‖[−1,1], as x ∈ [−1, 1], (MI1)

where ‖p‖I = sup |p|(I). This result is best possible since for the Chebyshev
polynomials Tk(x) = cos k arccos x (x ∈ [−1, 1]), k = 1, 2, . . . , of degree k
one has ‖Tk‖[−1,1] = 1 and |T ′

n(±1)| = n2.
Markov’s inequality became soon a fascinating object of investigations.

The reason lay with its numerous applications in different domains of math-
ematics and physics. A corresponding theory in the several variables case
is relatively new and until the late 1970’s all known extensions of Markov’s
inequality dealt practically with the case where the line-segment in (MI1) is
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replaced by a convex compact subset of Rn with non-void interior. One of
the obstacles was the fact that for some cuspidal sets in Rn no multivariate
counterpart of (MI1) can be proved. A simple example was first given by
Zerner 1969.

Example 1.1 Let E = {(x, y) ∈ R2 : 0 < y ≤ exp(−1/x), 0 < x ≤
1}∪{(0, 0)} and let Pk(x, y) = y(1−x)k for k = 1, 2 . . . . Then degPk = k+1,
‖∂Pk/∂y‖E = 1, while ‖Pk‖E < exp(−

√
k) for k = 1, 2, . . . , and therefore

there are no constants M > 0 and r > 0 such that for each k,

‖∂Pk/∂y‖E ≤ M(k + 1)r‖Pk‖E.

In the sequel, a compact subset of Rn is said to preserve (or admit)
Markov’s inequality, or simply to be Markov, if there exist constants M > 0
and r > 0 such that for each polynomial p in Rn we have

‖grad p‖E ≤ M(deg p)r‖p‖E. (MIn)

A satisfactory theory of the multivariate Markov inequality was devel-
oped in the last 15 years by W. PawÃlucki and W. Pleśniak, P. Goetgheluck,
M. Baran, A. Jonsson, J. Siciak, A. Zeriahi, L. Bos and P.D. Milman, A.
Goncharov and others.

The goal of this talk is to present a state-of-the-art survey of investigations
concerning the inequality in question. We shall start with the following
observation due to Goetgheluck 1980:

Example 1.2 Let Ek = {(x, y) ∈ R2 : 0 ≤ y ≤ xk, 0 ≤ x ≤ 1} (k ≥ 1).
Then the set E is a Markov set with exponent r = 2k. Moreover, the
exponent 2k is best possible.

This example had inspired W. PawÃlucki and W. Pleśniak to investigate
the Markov property of semianalytic and subanalytic sets, and more general,
sets with polynomial cusps. Let us recall that a subset E of Rn is said to be
semianalytic if for each point x ∈Rn one can find a neighbourhood U of x
and a finite number of real analytic functions fij and gij defined in U , such
that

E ∩ U =
⋃
i

⋂
j

{fij > 0, gij = 0}.

The projection of a semianalytic set need not be semianalytic (ÃLojasiewicz
1964). The class of sets obtained by enlarging that of semianalytic sets to
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include images under the projections has been called the class of subanalytic
sets. More precisely, a subset E of Rn is said to be subanalytic if for each
point x ∈Rn there exists an open neighbourhood U of x such that E∩U is the
projection of a bounded semianalytic set A in Rn+m, where m ≥ 0. If n ≥ 3,
the class of subanalytic sets is essentially larger than that of semianalytic sets,
the classes being identical if n ≤ 2. The union of a locally finite family and the
intersection of a finite family of subanalytic sets is subanalytic. The closure,
interior, boundary and complement of a subanalytic set is still subanalytic,
the last property being a (non-trivial) theorem of Gabrielov.

It is clear that the set E of Goetgheluck’s example is semianalytic, whence
subanalytic, while that of Zerner’s example is not subanalytic, since it is too
flat at the origin. It appears that the family of (fat) subanalytic sets is a
subfamily of a family of sets admitting only polynomial-type cusps.

Definition 1.3 A subset E of Rn is said to be uniformly polynomially
cuspidal (briefly, UPC) if one can choose constants M > 0,m ≥ 1 and
d ∈ N, and a mapping h : E × [0, 1] → Ē such that for each x ∈ Ē,
h(x, 1) = x, h(x, ·) is a polynomial of degree ≤ d and

dist(h(x, t),Rn \ E) ≥ M(1− t)m for (x, t) ∈ Ē × [0, 1].

By an application of the famous Hironaka rectilinealization theorem, it
was proved by PawÃlucki and Pleśniak 1986 that

Theorem 1.4 Every bounded subanalytic subset of Rn with intE dense in
E is UPC.

The family of UPC sets is essentially larger than that of subanalytic
sets. A simple example of a UPC set which is not subanalytic is given by
[0, 1]× [−1, 1] \ E, where E is the set of Zerner’s example.

The UPC sets are important from the pluripotential theory point of view,
since they admit (pluricomplex) Green functions with nice continuity prop-
erties. To explain this, let us suppose that E is a compact subset of Cn. We
set

VE(z) = sup{u(z) : u ∈ L(Cn), u|E ≤ 0}, z ∈ Cn,

where

L(Cn) = {u ∈ PSH(Cn) : sup
z∈Cn

[u(z)− log(1 + |z|)] < ∞}

is the Lelong class of plurisubharmonic functions with minimal growth. The
function VE is called the (plurisubharmonic) extremal function associated
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with E. Its upper semicontinuous regularization V ∗
E is a multidimensional

counterpart of the classical Green function for C \ Ê, where Ê is the polyno-
mial hull of E, since by the pluripotential theory due to E. Bedford and B.A.
Taylor it is a solution of the homogeneous complex Monge-Ampère equation,
which is reduced in the one dimensional case to the Laplace equation. It is
known (Zakharyuta 1976, Siciak 1981) that

VE(z) = sup{ 1
deg p

log |p(z)| : p is a polynomial with deg p ≥ 1

and ‖p‖E ≤ 1}. (1)

In other words, VE = logΦE, where ΦE is Siciak’s extremal function. Now
the set E is said to have Hölder’s Continuity Property (briefly, HCP ) if there
exist positive constants M and s such that

VE(z) ≤ Mδs as dist(z, E) ≤ δ ≤ 1. (HCP )

The importance of the class UPC is explained by the following

Proposition 1.5 (PawÃlucki-Pleśniak 1986) If E is a compact UPC subset
of Rn with parameter m then E satisfies (HCP ) with exponent s = 1/2[m],
where [m] := k as k − 1 < m ≤ k with k ∈ Z.

Here and later on Rn is treated as a subset of Cn such that Rn =
{(z1, . . . , zn) ∈ Cn : =zj = 0, j = 1, . . . , n}. Now we can come back to
the multivariate Markov inequality. By an observation that goes back to
Siciak 1967,

If E is HCP then it preserves Markov’s inequality (MIn).

Thus we have yielded a number of examples of sets admitting the mul-
tivariate Markov inequality. These are all UPC subsets of Rn. There are,
however, sets that are HCP without being UPC. Such (Cantor-type) sets
were first constructed by Jonsson 1991 and Siciak 1993. The problem of
whether the classical Cantor ternary set has Markov’s property has appeared
more difficult and a positive answer was first given by BiaÃlas and Volberg
1993 who showed that this set is even HCP . It is worth adding that there
are also Cantor-type sets which do not preserve Markov’s inequality and, at
the same time, they are regular with respect to the (classical) Green func-
tion (Pleśniak 1990, Goetgheluck-Pleśniak 1992, Totik 1995). Up to now, the
problem of whether Markov’s property of E implies that E is HCP remains
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open. We know only that the answer is ”yes” for a class of one-dimensional
Cantor-type sets (BiaÃlas-Cież 1995, Totik 1995). In general, we even do not
know whether Markov’s property of E implies the continuity of the Green
function VE or else non-pluripolarity of E. We recall that a subset E of
Cn is said to be pluripolar if one can find a plurisubharmonic function u on
Cn such that E ⊂ {u = −∞}. However, BiaÃlas-Cież 1996 proved that any
plane compact Markov set has a positive logarithmic capacity, whence it is
not polar. She also proved (2000) that if E is a compact Markov subset of
R then E is L-regular.

2 Polynomial approximation of C∞ functions

By the celebrated Bernstein theorem, a function f : I = [a, b] ⊂ R → C
extends to a C∞ function in R if and only if, for each s > 0,

lim
k→∞

ksdistI(f,Pk) = 0.

By a standard argument, this beautiful result can be easily extended to the
case of functions defined on (fat) convex compact sets in Rn. In general, the
classical proof of Bernstein’s theorem does not work, since, contrary to the
case of an interval in R, there are compact sets E in Rn and functions f : E →
R such that f are C∞ in intE and extend together with all their derivatives
to continuous functions in E, but do not admit any C∞ extension to an open
neighbourhood of E. A standard example is the set E = E1 ∪ E2 ⊂ R2,
where E1 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, g(x) ≤ y ≤ 1} with g(x) = exp(−1/x)
as 0 < x ≤ 1 and g(0) = 0, and E2 = [0, 1] × [−1, 0], and the function
f(x, y) = g(x) if (x, y) ∈ E1 and f(x, y) ≡ 0 if (x, y) ∈ E2. The problem
was solved by PawÃlucki and Pleśniak 1986. In the sequel, we shall say that a
subset E of Rn is C∞ determining if for each function f ∈ C∞(Rn), if f = 0
on E, then for each α ∈ Zn

+, D
αf = 0 on E. It can be proved (Pleśniak

1990) that any compact Markov set in Rn is C∞ determining.
Now, we are able to state a multivariate version of Bernstein’s theorem.

Theorem 2.2 (PawÃlucki-Pleśniak 1986, Pleśniak 1990) If a compact set E
in Rn is C∞ determining then the following statements are equivalent:

(i) E has Markov’s property;
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(ii) E has the following property: there exist positive constants M and r
such that for each polynomial p ∈ Pk (k = 1, 2, . . . ) one has

|p(x)| ≤ M‖p‖E if dist(x,E) ≤ 1/kr;

(iii) (Bernstein’s Theorem) for every function f : E → R, if the sequence
{distE(f.Pk)} is rapidly decreasing, i.e. for each s > 0, ksdistE(f,Pk) →
0 as k → ∞, then f extends to a C∞ function f̃ in Rn.

Here Pk denotes the space of polynomials of degree≤ k and distE(f,Pk) :=
inf{‖f − p‖E : p ∈ Pk}.

3 Extension of C∞ functions from compact

sets in Rn

Let E be a compact set in Rn and let C∞(E) denote the space of all functions
f : E → C that can be extended to C∞ functions in the whole space Rn.
We give the space C∞(E) the topology τQ endowed with the family of the
seminorms

qK,k(f) := inf{‖g‖K,k : g ∈ C∞(Rn), g|E = f}, (3.1)

where k = 0, 1, . . . , K is any compact subset of Rn, and

‖g‖K,k := max{sup |Dαf(x)| : x ∈ K, |α| ≤ k} (3.2)

or, equivalently, the topology endowed with the family of the seminorms

qk(f) := inf{‖g‖P,k : g ∈ C∞(Rn), g|E = f}, (3.3)

where P is a fixed compact cube in Rn such that E ⊂ intP . Thus τQ is
the quotient topology of the space C∞(Rn)/I(E), where C∞(Rn) is endowed
with the natural topology determined by the seminorms ‖ · ‖K,k and I(E) =
{f ∈ C∞(Rn) : f|E = 0}. Since C∞(Rn) is complete and since I(E) is a
closed subspace of C∞(Rn), the quotient space C∞(Rn)/I(E) is also complete,
whence (C∞(E), τQ) is a Fréchet space. If the set E is C∞ determining, this
space can be identified with the space of Whitney jets on E. Let us recall
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that a C∞ Whitney jet on E is a vector F = (Fα) (α ∈ Zn
+), where each Fα

is a continuous function defined on E, such that

|||F |||E,k := ‖F‖E,k+sup{|(Rk
xF )α(y)/|x−y|k−|α| : x, y ∈ E, x 6= y, |α| ≤ k} < ∞,

for k = 0, 1, . . . , where

‖F‖E,k = sup{|F α(x)| : x ∈ E, |α| ≤ k}

and
(RK

x F )α(y) = F α(y)−
∑

|β|≤k−|α|
(1/β!)F α+β(x)(y − x)β.

Let us denote by E(E) the space of all C∞ Whitney fields on E endowed with
the topology τW determined by the seminorms ||| · |||E,k (k = 0, 1, . . . ). It is a
Fréchet space. By Whitney’s Extension Theorem ([66]), F ∈ E(E) if and only
if there exists a C∞ function f in Rn such that for all α ∈ Zn

+, D
αf|E = Fα.

In particular, if E is C∞ determining, the mapping J : C∞(E) 3 f → J(f) =
(Dαg|E)α∈Zn

+
, where g ∈ C∞(Rn) and g|E = f , is a linear bijection of C∞(E)

onto E(E). Since, for a cube P such that E ⊂ intP , the seminorms ||| · |||P,k
and ‖ · ‖P,k are equivalent (see [66]), the linear bijection J is a continuous
mapping, whence by Banach’s theorem, it is a linear isomorphism.

Contrary to the case of Ck jets, for k finite, Whitney’s proof does not
yield a continuous linear operator extending jets from E(E) to functions in
C∞(Rn). Moreover, such an operator does not in general exist, which is
e.g. the case when E is a single point. The problem of the existence of
such an operator has a long history. Positive examples were first given by
Mityagin 1961 and Seeley 1964 (case of a half-space in Rn). Stein 1970 showed
that such an operator exists if E is the closure of a domain in Rn whose
boundary is locally of class Lip 1. Bierstone 1978 extended this result to the
case of Lipα domains with 0 < α ≤ 1. He also proved that an extension
operator exists if E is a fat (i.e. intE ⊃ E) closed subanalytic subset of Rn.
His method is essentially based on the famous Hironaka Desingularization
Theorem. Another method based on results of Vogt and Wagner concerning
the splitting of exact sequences of nuclear Fréchet spaces was applied by
Tidten 1979 to show the existence of an extension operator for closed sets in
Rn admitting some polynomial-type cusps.

All the above mentioned sets are UPC (whence they are Markov). It
appears that some restrictions concerning cuspidality of E are necessary,
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since Tidten 1979 proved that for the set E of Example 1.1 (which is not
Markov) there is no continuous linear extension operator from (C∞(E), τQ) to
the space C∞(R2). However, PawÃlucki and Pleśniak 1988 showed that if E is
a Markov compact subset of Rn, then one can easily construct a continuous
linear operator extending C∞ functions on E to C∞ functions in Rn. In
order to state this result, we give the space C∞(E) a topology connected
with Jackson’s theorem. To this end, let us put d−1(f) := ‖f‖E, d0(f) :=
distE(f,P0) = inf{sup

x∈E
|f(x)− c| : c ∈ C} and, for k ≥ 1,

dk(f) := sup
l≥1

lkdistE(f,Pl).

By Jackson’s theorem the functionals dk are seminorms on C∞(E). Let us
denote by τJ the topology of C∞(E) determined by this family of seminorms.
In general, it is not Fréchet. We are now in a position to state the following.

Theorem 3.1 (Pleśniak 1990) Let E be a C∞ determining compact subset
of Rn. Then the following requirements are equivalent:

(i) E is Markov;

(iv) the space (C∞(E), τJ) is complete;

(v) the topologies τJ and τQ for C∞(E) coincide;

(vi) there exists a continuous linear operator

L : (C∞(E), τJ) → C∞(Rn)

such that Lf|E = f for each f ∈ C∞(E).

Moreover, if E is Markov, such an operator can be defined by

Lf = u1L1f +
∞∑

k=1

uk(Lk+1f − Lkf), (PP )

where Lkf is a Lagrange interpolation polynomial of f of degree k and uk are
specially chosen cut-off functions.

By Jackson’s theorem, the topology τQ is finer than the Jackson topology
τJ . Hence by Theorem 3.1 we get

Corollary 3.2 If E is a Markov compact subset of Rn then the assignement
(PP) defines a continuous linear extension operator

L : (C∞(E), τQ) → C∞(Rn).
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4 Markov Exponent

By Theorem 2.2, if E is a Markov compact subset of Rn and f : E → C
admits rapid uniform approximation by polynomials on E then f extends to
a C∞ function in Rn. In general, the extension is done at the cost of a lost
of regularity of f . It is seen by the following

Example 4.1 (Pleśniak 1994) Let Fp = {(x, y) ∈ R2 : xp ≤ y ≤ 1, 0 <
x ≤ 1} and let F = {(x, y) ∈ R2 : 0 ≤ x ≤ 1,−1 ≤ y ≤ 0}. Let
f(x, y) = exp(−1/x), if (x, y) ∈ Fp and f(x, y) = 0, if (x, y) ∈ F . Then f is
C∞ in intEp where Ep = Fp ∪F and all derivatives of f extend continuously
to Ēp. Moreover, they admit the following Gevrey type estimates:

‖Dαf‖Ep ≤ C |α||α|2|α|, for α ∈ Z2
+. (4.1)

Since the set Ēp is p-regular in the sense of Whitney, f can be extended
to a C∞ function g on Rn(see Bierstone 1980). However, if p ≥ 2, there
is no open neighbourhood U of Ēp such that the extension g could satisfy
estimates (4.1) (with exponent 2) in U , which can be easily seen by the Mean
Value Theorem.

It was shown by Pleśniak 1994 that if we know the constant r of (MIn)
then we can estimate the loss of regularity of a C∞ extension of f . This
motivates the following definition of Markov’s exponent of a compact set E
in Rn:

µ(E) := inf{r > 0 : E satisfies (MIn) with r}.
If E is not a Markov set, we set µ(E) = ∞. By the fact that the Chebyshev
polynomials are best possible for (MI1), one can prove that if E is a compact
set in Rn then µ(E) ≥ 2. In particular, if E is a fat, convex compact subset
of Rn, then by a standard argument based on inequality (MI1), µ(E) = 2.
If E is a UPC compact subset of Rn with parameter m then by Baran 1994,
µ(E) = 2m.

It appears that Markov’s exponent is invariant under ”good” analytic
mappings. More precisely, it was proved by Baran and Pleśniak 1995 that

Theorem 4.2 If E is a compact subset of Rn satisfying (MIn) with an
exponent r, and f is an analytic mapping defined in a neighbourhood U of E,
with values in Rn, such that f(E) is not pluripolar (in Cn) and det dxf 6= 0
for each x ∈ E, then f(E) also satisfies (MIn) with the same exponent r as
that of E.
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This result is sharp in the sense that if the assumption det dxf 6= 0 is
not satisfied for all x ∈ E then the exponent µ(f(E)) may increase (Baran-
Pleśniak 1995). Moreover, if we knew that Markov’s property of E implies
that E is not pluripolar, we could remove in the above theorem the assump-
tion for f(E) to be not pluripolar.

5 Final remarks

It is difficult to survey all ramifications of the multivariate Markov inequality,
so we have concentrated only on its uniform norm version. For its Lp versions
we refer the reader to papers by Bos-Milman 1995, Goetgheluck 1987 and
Baran [6].

Finally, let us mention some new topic in the recent research on Markov’s
inequality. These are
- Markov and Bernstein-type inequalities on curves or submanifolds
in Rn (Bos-Levenberg-Taylor 1995, Bos-Levenberg-Milman-Taylor 1995, Baran-
Pleśniak 1997, Baran-Pleśniak [8],[9],[10] ;
- Markov property of Julia sets (Kosek[31],[32],[33]);
- Markov type inequalities in Banach spaces (Sarantopoulos[51], Harris
[26], Munõz-Sarantopoulos[39], Baran [5]);
- Markov sets in polynomially bounded o-minimal structures (Pleśniak
[49]), (PierzchaÃla [43]).
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[44] W. Pleśniak, Compact subsets of Cn preserving Markov’s inequality,
Mat. Vesnik 40 (1988), 295–300.
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Pleśniak, Banach Center Publications, Institute of Mathematics, Polish
Academy of Sciences 31 393–390.

15



[65] K. Wachta, Prolongement de fonctions C∞, Bull. Polish Acad. Sci. Math.
31 (1983), 245–248.

[66] H. Whitney, Analytic extension of differentiable functions defined in
closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.
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